بررسی اثر نرکیبات پلیمری کاتیونی بر روی تار مو با استفاده از داده های نظری و اسکن میکروسکوپ الکترونی92 (SEM)- قسمت 12- قسمت 2 | ... | |
V/0KcnoIMuD7oscNB8T+iMjr7cnK7HETmY0TA6fAWdCtfm0NbYJgFNdKBulWBIyAHo1HUs2tuSlrWfF3A8ewjdOyaqNv610cex2CGQ2A6tZ3ffuH/CiKYaONoTIImbMzLlrV81UGWOlrBK7RolPkDmwZICXAJTSIaWj/19V8u6Vz5u+99NoAiryqnosAauo20zzQJdWhmG9UennCrCyCbecNYuEPjxo1tbEjAW13/yprMRn0mR5+MzsD6OAMOD7hd57GzsjRMZzndJ0Xq9p6jSb0/h8lK9wl928wgp71fPrPu2PqmPUbwwt5fnrIXcNCRhk0rmh16Qd90rOyIs9XHbW+ZhPbEqjS5ndEzpexDes2GVNfqugiBH0/YDF8TR6Eh2FfrHzAI4l2Yia8Rgfr18don3FhtxhxscWLPQz+a0BFjduDFUI43ucOnqI/QO5PdGPfx4XdHfPnld+hN+3u9Ax9ajFoghnKHbx9eAtwgHsnn8ulsNpdHkDeIO/FnrjyMoz0U9FRf2BYaLU0Njg4xH70EHyccedAnj31Ptg4+6qrUnVGqlquH6lv4g8rcthqoDbSijkejDclEPB5H6EWtyhzxuk6154YT7GpGHN7WcX1f1mG/AYtV9LK3B20ZOyD0ss3uNpPbHbbeOUY776pAxQgSWT4gIkjwgfmAX7QUSrYc/2m4XVb8/cpvBkqI8iY0IVULICM2lQEzhnhGojHNjBuyBsAbIGcQn+gPTHgEEVYsTyQ4+B/T8abtpdETjc7A22YGhiG/ExemjTxNr60mtaft7ml7p2UNDUiIGvHpdp0JHmdKrMpXOGHhBJYoU094eSDBdq47oUeBDEMZT1SPZD6GuQw3nPpgdFAzqjx56MSVLqv+Xv0CeBVOoZs41+fcRTqJOox4TGIPT4A++DIkZDNnCMWT1KtIbQfSPGLDTYoBGfuiHka+2LzwYO5cTiAbaJH96n1Nt8RTD3brjNHRZJg/qH70t3DFrn/gQ8yHityTq/OgiHdndV8YcQm/JWoIlyq5PHiQImsCl/HDor4M/2GFGK1rI/wsI5dKNwi3y7L+3AdP/5qYj5EBpyISnLo2JWvbyWXQoNIHUlkiITAd4Wg8FoFSRUaLeV/gULDF560xt9mNDqzjATuctzzdynV7to6yNO7hh2EgW8j1z6yyIEW0uvWsHVa3IwSVjIXw9q1tVuMG4XZBVAf4oKqvGGhsP/70r89f2omA00AFkE4RVwi5kn/UShy7re2uoX4x9mTk+DVU76rpwRl+14183dhcb+G+Hj316AyMzsDoDKzTM7AWwcfbJNXWQKRhBUs6MkAo4Kg4SURHoeJOGV6OWDTU2tw0YVzH5Injp0yaMHXS+InjO9pbm1F0o6kh1hCPxqOo68GuSSorg8hn8BOKf6a2xg/+LPFFVN5DtDWjiNCfyBePBJKxcFMy1tKYQLrU+DHtUybz+DjLhHFj2lpbkjGkyLPnC1kDH0aCNSSuRYXfNUyRNLL/RTXIL6mf4Vf0uj3sK3YQU8wiFOr8gWl+RoHab/dEZ9E3vZSX+gGF0QjEeBQm0xIYGcoXQJHHhgSH/scf9Inaq0zsRtgHyhPjN3/K1Wr9p4R0uGpNv1d5ghh7/VSLFf4uIdQDrZXYxomzTc7DQNgo7Fin5c3o4EZnYHQGRmdgbc8A9PmqRcYWPxpBBpYZzsYCrRNkj7Fjjl90Pj0RbAzvZBClKDJqMoNTNm5RZNJwzkuiSmD4g5ln/Bc6kDV+EfOxtCe71wfO+sTJR33h4+/PDw0i19u0vavjr3hMe4hsUFCycQt2KM8nqZHUyTSmapmvyNGI7lur8BiveE+949fJAo+IdJ/2/JrmWXyFh7EOI04rim/YdepxKTZ6Jv8oWl3eFySDsa90sKn12DO+vnBx9/1/+F6gjB7WFi+KxGYFqxvpsarztz6QOr+ou6HukF68q90gOcuMhiKoXDdW2dreXqPHG52B0RkYnYF30Aw45gMxha1ekTEpYM8tNqxuV3vRDIdcxYth1IL5F6SnV3uIN+MD1E7m/3AONKfujVigSmUKO+M/zF9oDhZnycNeB7EBPgIF+sugOnAo5FSjIE40EgQLkohHYolojIX6aihtG0nEkvEIXsRPPBbGZ+CUiYRY3I/xmmiPS4ufBzTniql4i2jgOTlQHMnCzqnWBSM4FA1Vrzl3iTlNXvmn/hW7DSOPYOrefDrCHa94BPPUGIbRE9Ed9bO7ydHt58AMvBlk0zf0As+g/DO9qc8xOZlPdMH6e5jAGfFcq8iu2D5pH+edsttjwV/uCDzFurHS3ozVPHqO0RkYnYHRGVjHZ8AEcl25OH1gfn6nMJylbbJbyTwGJ+y/1T0cM+8+Jk+AKRSnUdcRg1SQiMhDKRkjNaEGbJpOulAfoqoVhNJluOpb8jG42aTqZbMgpGsDTxTpU0BRXb2rvBD3EMJwD0NjYjA4FP4r5KGIDkNspo0N+BgrAKDjWqh4rdqsYdsa/dhXdBB3PearcQjHdL7nO6kjADcXSkwxKDT8xNKFNFEj/DduOm2d6aEvumkUfHGYwx1UXabJgnhwxANWHtioow7viT7J5Yk0Fzl6ELVqAEelAOojWN1yHX1/dAZGZ2B0BkZn4E2YASPUzXatP3dPhRKMRzebclgFyvh/NT5+lWGrAZkyvKl41cVGSluhBuuMz8XoDP1GbQnHbkipEmbInldggpEKLj5Ces1QGnGAps8+z4eYEipVPGH6Bnrass4uqwHW2QL7pFCEAxP1aAz3qsE9vWsHNoTEk7oz/4ceXq2ifqUPDBMW9m5d7RuzMnwSd42OuqiDT4OvdT5jJCg1vweLJfIfJgGJpdAaUF4zf0D58GVUT8Y/ItmGkdwabANhNk2ZR6F4ZJGDU+7+rsGhRj8yOgOjMzA6A6Mz8IbPQJ35cJ1rnFLTeaX1rK+NqV5r7KI/BRvWiPlgzqgDHzge69SaGbomX37DL3/4BCNQ2Ajw4Rh/qX97ECcYDSFMZg/hKe8vfcIFZfBaWSkLWtG4CIMy5nqwg9lR618fPs7wseuIxBukjZAHYsWu//nHDiI2pX7gOjPlsJj3jvdBj9pwuMRGUX9xJJ/liA7RD6JF2GrBOVYcYCFkY5KM1pSIChE63kV65Eqdl/mPJ4I3Hn9jE+JRWfblUfDxJu6l0VONzsDoDIzOwGpmwEzoumm7iiPFtCnr3Kumt1XT90xiI7LXYH6tMreCNGHqBiJslkMlzMq1jk1Zg6O88R+pozALQ3GT4ggAF6Li/FOy5M0BY3SIYyfMo6AABiliowzYxJWXjh4/JAbYj0UYYtXJM8BiyKPuiLFjm6vC4KA3DyNGO+wzM/bhdf/8x5hecdI92kUYUnSMKXfvuVtCI65O2Epo0wOdhjwFPIif2DzBokO5JPicy4ORH4Yo7Cb81x8d2mNrbE17+MO+ucrKfuNX0+gZRmdgdAZGZ2B0Bv7LDDgj35nQMsulPAUVqA1C6AdkzhfxHVIX5tOXa73uN3jVc0iXGFcCjj0YQ0V55JbK8+LU87pxg16R+ah7YJwV7ugGpzVNdzp/iV4TiSEXjSlkM+ylojFtVV+hiDxSakOb0VUf9a97dIg7Wt0pY8fSY8Ro62TF//qkftj/ekM899R/OZt5h1Z5iO7RhVgoh7VJMk+SQJylCKsYsCgPQUCBLiOR1uBHcy/Ww+M5homcUeZj3dhlo6MYnYHRGRidAc1A3chneS1nyQtaGPZA/Ym40fHsl24xgsMEiP25mofr9yvnBDrvxKtoXSgGwOz4V1DCqzviOv6+uR7kPZA7QzEuqOcR8VemtLe0xNFkSMXIHJmxjl/NWhtenasRFnXriIisAkCGUFxzw3l5Lg61ib0Y6cJZa8MZPdDoDIzOwOgMjM7AWzcDjpB2PnhzpIijIBCp+pEvmrD8BFmt5mDQJ5xlvwbMhwsFMDogFPOFk7J4zZTVv8M2rrH3UsurhzX/ddbsEO5yPC+KXvHe0Wm805mhbb4D77m5VOzHe90+YKSGfbL+TfdUatUiPhhiSROfIQ7oc9bUcOcfLznhyHdXM1lU4fKcFXbx7jTDB/OOPTxCN1Q3SDc/7ttu0oYvYfhS7K36tbqR1+fGIKg33a9/0t0tc7NXn1ibbneC+mnqJ0UGUHM82hqPsXukI5HwpmXfGLsmH9XwJNWfu7tSvzfu3rpbY5yJtwaG798IvD18m90UOabKWxfeStC7I+Zz+IwefK7j6Nc/fW+dBBg98+gMjM7A6Ay8BTPgQvEsiMFKPDnfPA32UCwQSSqRQKhEhAitVs85IziymgfbiAmisL8auIDKssdqPXPYzZfK2Uqau7QXO5jgzZq7dV7p9MRSwlOCAApGdB/jBQhiGTdvQMEQmD4sSsJ91gCEI+wdQ+P96b65infB1KwcDKgd7jI58HV2nmbfZ7R1DoI+wsPl/tS1rbtwfd+0rbP2644u71rkvXAQUeN1ety7VO9K3OXYZZru9Z66KZBON6eHdzxzGf2Hy2R1d3j4fSNzDKTaoWy98O6ztjqaWANY+NCkGwEeJYKyQKR3CDVNfWOaQmhUg25zivmQP64WRufn+m0z+s0iOXRcu2IDr8PzoPPrtg3zJfUr4hOti/oTW292ze47BnZsaoyfsrCT+gHt6gznubgSb83o4KNEzZovmNFPjs7A6AysnzOgFAPE+1WVkCGYwIQWVvVE0e9aJTY2vOGevkAUcpiRgBTLFSZYMO1FL6yBpmIpSyIMKF9lMAT75pWWPRIMoACGqQ/Tp4YSTH0Pq8nXf1sEK3R0hy48Nea0j8CUp788Ve0RAKbBXqaHTbG6V+3wqz48gCOFZb1nVceV88aGJtUyKmqoz7IrOV9HDqa8HErysMII+GQ608GjYVVrXBS/WEcR3phsnE5/2sDdKey6jRZwetQAk1O59at4bXMvZWx61+CeqWadF8ADyAKdbLGmODksvKGpwBthxCBj5ZUxOajKDv8L54aXU63F/L4yolGBSdxxvREbA1eHDB4c81BTHZG94hU4yOYGafNSBw0OmbgjKtbJ8EcdkXqft9Wjzw/vArtwrZ3Rx+gMjM7A6AyMzsArz4C0kVNb+gQLO0lyolBTsFYp+1qnB6fujpfVxh0mKVQoyjEgaMFFNYgIWY2oldlPZWOVu2q+RIsvHAaaQbFtahMyH2UgFCioCuJKyBSwT5v99/oe5hLRbzAN5PPRKFXltFS2yypo8noDjL5AOVG/2oo45gdgDFfLFiq01NktDtdMBWR/o+0Z63UQWugVP44cVEO6EpvFm13uNJr0k2UKUTEj2wWXjDMGpbBwMBb9IOjjtYd4VlUdh79L5dWBz6B6ORwMGGdRP3ooaT0nIMFnWKScV6uiXF7gTqhaDVFva9ZRcRWnwNziFVwy7wP4BY1YzjUej1jSLYXXO+lOTXNGBR6AsUq8CkwyE1fwNyeKLW15P3AtQBmYDVRzLVRLRTznneJIdNdwcYGSgEsA6BjXWANYcQCWV13hDcVXtIJ4Ibq/NnUs0l7SWsZxuEIVf8Mn9hVOsi6a48ERXNwzqDjeJkFvYm0LfuWUY9HXAmWMH5eGYfOKODKtMOIW/FLxFi26UeTx+jbt6LdGZ2B0BtabGaCSMB8K1BPFOyzSIIEGlTPKhEd8DW0mXUmLmF3rcjs8624NJK3yGqSPnaEYbfTF21T4A0em2pZ+oHY3l47yYLwAxNd9M8yQZzxjRT3GlN7LUp7sylaxKFipdo/M8OqFwQinKg+p/Zmn/YEyPK0ChEH+hzqqTCUIjMamcQQlrKpJ7Y46Fq6iB89VU58zfAbIo2KcB6EW0Q0OQyUmIEOtya5xVM1QeUALhBMM+tXM8RXRUxiWVV6X3kT5VA7CHCaES9TQdgq2rzMYp1QjfUAV4HF2ZbEKUep89r7jBF7flBvWw0h1SpUZZQM8jEA+Nc6utZnlE+Iq4oCQiBBMOCZM2t4PNABgSoggHw2Oha+zjR5jUjlw9m+p+cuYlkqAIdB4U1XttWIYyko8aK4TKx4rXCY0yAqzrnytIC7e53E0SRqtcCpBhVE2nHUNgaPWAlCfXWEffBizrmvWz/BGeN3g7fXN++i3RmdgdAZGZ+BtOANSSRKu0hzIRmEYhum2aNLfME66i5IXybGUwCwSZi+Yt3316MPcLooclPcFXy73LawufzjiK1dgsIIAgV0pzwHGAS5COIU2sXWTfX0PaRANOBLxFQrQK0jzhboPgGUJJUEz1IrZUAQXGynnSwzPYBFSuEWq/kgIhi5IjDCpCuQZw3zHl9C9pQQUEwyGgWCkooJBqE51EaECLVUqiGEIIEyBV1mBHQ6Eg6qmwZAvEWd6bbmIAwShVmXz46KDmkrR9NUqUnDBpgTDlUAZUxEIJXy+cq2UrwTCgEHBWgmt6H3BULVcFBGAD0QwSJIkQDrReAWcRjmHQwF8qFoGoitKvlioVsCtDIFsCPrh1qiEcMZ4iLcYYymim67lQJMgkZLn/Hvw8jXPOhcK+Q0wG6CKeGmYbwQXVwoFDEZaGyhN+CyMS69UCsAR4Vqoggm3OQCiKzPrBbEhooACAKblACYNA45EebhSqVIqYdwRfAGzi+sM4HLQO5jN+3yYYSBmf9Rfi1T8xSDaCvujtUJWSAWnwMWW/JGEr1TkxKGLMArY4FYXyyy96g+iDQ8b6pZLBEckvzjjwXAEl1UuFQyZ1iolxO2EwjpphUfCSxwtj8DoJXOxjbpdXvPqGf3C6AyMzsD6NANmq0LpgAiAPafYT/xVopiGgmybEZ24A4xS+U1Mk7uHXjCH+Oo93MELzv+KPm2gBRwAdHSylO4OllMkWnhYVf6AOFcjU/Zkl+H5ukP3xKIATgTThcr8JT3JZCIUhmZg+AXiDhZ3Dg5lKy2NyaXLu1cMFduaW4LlAkcHn5LPN3t+TyjkTyTiQ5nSoq6h/lSmL413o8nW1mAkWM1DDwFZIG0n2jVUWdI11JeqDqSK8Xg80tzgr+ShiKAtQa+E0Swu0bIy5X/2xSUre9PxpuZkU6Mf6IHzBr0aWN5d6OrP9qdzmWKwpa0VirJWLHL+faF5y4YK5VoyGaXPRRb4YK6yZHlvc1Mj7ka5Gp63pC8QicSicAAF5y3thrMnGQvTrHfV6wP5cnD2kv5ktDEMTRkATimHky2lQOKlRd3z5/cGI4nmMc2BIh1K8CdU/DHwEIB9uDOa+df1MHqAqpcryR+MDOUL85f2NiWSYU6Y0Qk4fqirL7uiL93amMR1Zcuh+SuG+gczfYOlmj/W0NwAiFHD7QhgOir+QCmUbC6WQ88tXDl3cXckFGtqaQqFa+UyoAfAZKU/VVrUnVuZLg5liolEY6QxWSuWuJbC/u6BdFfXUGtzA0Etk4sAPYLzFvWimTA6/PkCoc6uwf5UvrkxgRtSrgVfWtINpJiIAm2Yp4rhwQuWDeQK5YaGGIFVuRSKNQTiTV0rh557aVm2EBgzdkwQ6wqok/4jLlsGabt4ntc1h6NfGp2B0RkYnYH1YgYcnywWQyADegp6owp6IBwav4U/2iJ5aiYy1Ypz0xjpIUSy2nkC8wHDlxSB3PPk2BlZ2P2cv/OJQBCaD8AnHGQIK9QPlC2MY8IAO9XrYz6o6yqVUEPDnfc+fcpZ37751xdut830UhaqPeyPBA8/+QvtLe1XXP6Nn37v8m/84k9/+913tpzZVspkI63tV/3+r+d844rbrzh/+113+MIXf/zLG+9uS5RLZYw+OmP6+M99+qQDd9u6nOkDLRGKNhx15nfufejZppi/WK7GY4ljjjrw7I8cmQzmYUCHQvGuwey53/rV3fc+U/HlYFxHwo0fO+bdn/3o0RHfEOzpOfOWH3LKRblKnqivGJwxY/L5Zx/7rp22qOSHKrX43od/+l177/CNC04rD/T6qsVQS8vlV9/x7Z9e8/fffW/6lJYFyzL7HnHmBWefdPJxBw/2pA48/MzD3rfnF885tTTUHySEKAcTiceemv/ek7/++x9/bt89ty0MDUabW2786/0Xfve3fb0D5VIpHI4fefDO55/98eYobPcc2B4vKOf1Ux91xw0OgYZ6oeaWW/5879lf/untv/v2RjMnlnM5XyAM5iDc3PSF8y598Imn/nr9j+KNwauvufOz37mmJVrBLFcCsb132+arZ5+w4bh4BVEgWAXR5p//9raf/urmwUIayj9QCe+2/S پایین آوردن یک یا چند کشش مرزی در سطوح مشترک موجود در دو سیستم شویندگی
[چهارشنبه 1400-01-25] [ 02:54:00 ق.ظ ]
لینک ثابت |