آزمون t یا t-test آزمونی است که برای معنادار بودن ضریب همبستگی انجام می گیرد. r ضریب همبستگی خطی است که شدت همبستگی بین دو متغیر X و Y را در نمونه اندازه گیری می کند، پسr یک آماره نمونه است. اما ρ ضریب همبستگی خطی است که شدت همبستگی بین X و Y در جامعه را اندازه گیری می کند. پس ρ یک پارامتر جامعه است. در نتیجه ضریب همبستگی محاسبه شده از نمونه(r ) برآوردی از ضریب همبستگی جامعه خواهد بود. گاهی ممکن است که دو متغیر X و Y هیچ گونه وابستگی خطی نداشته باشند و ضریب همبستگی این دو متغیردر جامعه برابر با صفر باشد ولی ضریب همبستگی محاسبه شده در نمونه کمیت غیرصفر را نشان دهد. برای روشن شدن موضوع باید آزمون t را انجام داد. در تحقیق حاضر نیز به منظور معنادار بودن ضریب همبستگی محاسبه شده از نمونه و امکان تعمیم آن به کل جامعه از آزمون t استفاده شده است.
۳-۹-۱۳ آماره دوربین-واتسن
در آمار، آماره دوربین-واتسن (Durbin–Watson statistic ) یک آماره آزمون میباشد که برای بررسی وجود خود همبستگی ( autocorrelation=رابطه بین مقادیر که با تاخیر(lag) زمانی مشخص از یکدیگر جدا شده اند) بین بافیمانده ها در تحلیل رگرسیون استفاده می گردد. مقدار این آماره همواره بین ۰ تا ۴ قرار میگیرد که آستانه های مورد پذیرش آن به صورت زیر است:
مقدار ۲ برای این آماره نشانگر عدم وجود خود همبستگی میباشد که حالت مطلوب در فرضیات اصلی مربوط به باقیمانده ها در تحلیل رگرسیون می باشد. اصلا مقدار کمتر از ۲ همبستگی پیاپی مثبت (نوعی همبستگی پیاپی می باشد که در آن مقدار باقیمانده مثبت برای یک مشاهده شانس مثبت بودن باقیمانده مشاهده دیگر را افزایش میدهد و بالعکس )و مقدار بیشتر از ۲ این آماره همبستگی پیاپی منفی را در بین باقیمانده نشان میدهد. لازم به ذکر است مقدار آماره آزمون اگر کمتر از ۱.۵ یا بیشتر از ۲٫۵ باشد زنگ هشدار برای وجود خود همبستگی مثبت یا منفی بین باقیمانده می باشد.
فصل چهارم
تخمین و یافته های پژوهش
۴-۱- مقدمه
در فصل چهارم به بررسی الگوهای ارائه شده و تفسیر نتایج پرداخته می شود. در این مطالعه مدلهای برآورد شده براساس داده های ترکیبی است، از این رو ابتدا بایستی از مانا بودن متغیرها از طریق آزمونهای مانایی مختص داده های تلفیقی اطمینان حاصل کرد. پس از حصول اطمینان از مانا بودن داده ها، مدلها برآورد و تفسیر میشوند. در برآورد مدلها براساس رویکرد داده های تلفیقی ابتدا به منظور تعیین Pool یا Panel بودن مدل از آزمون F لیمر استفاده می شود و در مرحله بعد آزمون هاسمن به منظور تعیین روش اثرات ثابت و یا روش اثرات تصادفی انجام می شود و در نهایت به منظور بررسی رابطه بلندمدت بین متغیرهای مدل، از آزمون همجمعی کاو استفاده می شود.
۴-۲-آمار توصیفی
در تجزیه و تحلیل توصیفی[۵۷]، با بهره گرفتن از جداول و شاخص های آمار توصیفی نظیر شاخص های مرکزی[۵۸] و پراکندگی[۵۹] به توصیف داده های جمعآوری شده پژوهش پرداخته می شود. این امر به شفافیت و توضیح داده های پژوهش کمک بسیاری می کند. نتایج حاصل از تجزیه و تحلیل توصیفی داده ها در جداول (۴-۱) و (۴-۲) ارائه شده است.
تعداد مشاهدات پژوهش حاضر ۵۶۰ سال- شرکت است. این مشاهدات حاصل از ترکیب دادههای ۱۱۲ شرکت پذیرفته شده در بورس بهعنوان داده های مقطعی در طول ۶ سال(۱۳۸۷ تا ۱۳۹۲)، بعنوان دوره مورد مطالعه میباشد.
اصلیترین شاخص مرکزی، میانگین است که نشاندهنده نقطه تعادل و مرکز ثقل توزیع است. میانه نشان میدهد که نیمی از داده ها کمتر از این مقدار و نیمی دیگر بیشتر از این مقدار هستند. به طور کلی پارامترهای پراکندگی، معیاری برای تعیین میزان پراکندگی داده ها از یکدیگر یا میزان پراکندگی آنها نسبت به میانگین است. از مهمترین پارامترهای پراکندگی، انحراف معیار است. میزان عدم تقارن منحنی فراوانی را چولگی مینامند. اگر ضریب چولگی صفر باشد، جامعه کاملا متقارن است و چنانچه این ضریب مثبت باشد چولگی به راست و اگر ضریب منفی باشد چولگی به چپ دارد. ضریب کشیدگی میزان کشیدگی منحنی فراوانی را نسبت به منحنی نرمال استاندارد نشان میدهد.اگر کشیدگی حدود سه باشد، یعنی منحنی فراوانی از لحاظ کشیدگی وضع متعادل و نرمالی دارد، اگر این مقدار بزرگتر از عدد ۳ باشد منحنی برجسته و اگر کمتر از عدد ۳ باشد منحنی پهن میباشد. آماره جارکبرا و سطح احتمال مربوط به آن، نرمال یا غیرنرمال بودن توزیع داده ها را نشان میدهد. چنانچه سطح احتمال مربوط به آماره جارک-برا برای مشاهدات مربوط به یک متغیر، بیشتر از ۰۵/۰ یا به عبارتی (p-value>0.05) باشد، این نتیجه نشان دهنده نرمال بودن توزیع متغیر موردنظر میباشد.
برای مثال با توجه به جدول (۴-۱)، متوسط تغییرات حسابهای دریافتنی شرکتهای نمونه برابر با ۰۹۴۷۹۳/۰ است. میانه برای این متغیر برابر با ۰۷۶۱۵۵/۰ شده است. کمترین و بیشترین میزان این متغیر نیز در کل بازه زمانی مورد مطالعه به ترتیب برابر با ۵۶۲۴/۰ و ۰۰۰۰/۰ می باشد. انحراف معیار که معیاری برای تعیین میزان پراکندگی داده هاست، معادل ۰۷۴۳/۰ شده است. با توجه به ضریب کشیدگی (۹۴۴۳۴/۱۰)، منحنی برجستهتر از توزیع نرمال و با توجه به ضریب چولگی (۳۱۸۸۱۹/۲)، منحنی چوله به راست میباشد. آماره جارکبرا و سطح احتمال مربوط به آن نشان دهنده نرمال یا غیرنرمال بودن توزیع داده هاست، که با توجه به نتایج حاصل از این آماره و سطح احتمال (prob<0.05) در جداول ذیل، تمامی متغیرهای مدل دارای توزیع غیرنرمال میباشند، اما با توجه به قضیه حد مرکزی اگر یک نمونه تصادفی n تایی از یک جامعه غیرنرمال با میانگین و انحراف معیار انتخاب شود توزیع نمونه، تقریبا به صورت نرمال توزیع میل خواهد کرد. وقتی n بزرگ شود غیرنرمال به نرمال تبدیل می شود .به عبارتی در قضیه حد مرکزی هر گاه اندازه نمونه به قدر کافی بزرگ شود انتظار میرود که تخمینزننده دارای یک توزیع نرمال (البته به طور تقریبی) در نمونه گیری های مکرر باشد. اهمیت قضیه حد مرکزی در این است که این احساس عمومی را که بسیاری از متغیرهای تصادفی در حالت طبیعی خود دارای توزیعی همانند توزیع نرمال است را قوت میبخشد(درخشان، ۱۳۸۶). با توجه به اینکه در این تحقیق حجم نمونه ۱۱۲ شرکت و بیشتر از حداقل حجم نمونه موردنیاز برای برقراری قضیه حد مرکزی یعنی حداقل ۳۰ نمونه میباشد و از طرفی تعداد مشاهدات در این مطالعه تقریبا زیاد و ۵۶۰ مشاهده(سال- شرکت) برای هر متغیر میباشد، بنابراین میتوان گفت که توزیع تمامی متغیرها به سمت توزیع نرمال میل می کنند.
جدول(۴-۱) تحلیل توصیفی متغیرهای مدل
متغیرهای مدل متغیر
آمار توصیفی
تغییرات در موجودی کالا
DGS) )
(میلیون ریال) تغییرات حسابهای پرداختنی
(DAP)
(میلیون ریال) تغییرات حسابهای دریافتنی (DAR)
(میلیون ریال)
۳۰۵۳/۰ ۰۸۱۱/۰
برای
موضوعات: بدون موضوع
[چهارشنبه 1400-01-25] [ 04:26:00 ب.ظ ]